
© Copyright Ian D. Romanick 2008

6-August-2008

VGP393C – Week 4

⇨ Agenda:
 Algorithm Structure

 Task Parallelism
 Divide and Conquer
 Geometric Decomposition
 Recursive Data
 Pipeline
 Event-Based Coordination

© Copyright Ian D. Romanick 2008

6-August-2008

Algorithm Structure

Finding
Concurrency

Algorithm
Structure

Supporting
Structures

Implementation
Mechanisms

© Copyright Ian D. Romanick 2008

6-August-2008

Algorithm Structure

Finding
Concurrency

Algorithm
Structure

Supporting
Structures

Implementation
Mechanisms

Last weekLast weekLast week

Week 2

© Copyright Ian D. Romanick 2008

6-August-2008

Algorithm Structure

Finding
Concurrency

Supporting
Structures

Implementation
Mechanisms

Organize By Data
Decomposition

Organize By Tasks Organize By Data Flow

Algorithm Structure

© Copyright Ian D. Romanick 2008

6-August-2008

Algorithm Structure

Finding
Concurrency

Supporting
Structures

Implementation
Mechanisms

Organize By Data
Decomposition

Task Parallelism

Divide & Conquer Recursive Data

Geometric
Decomposition

Organize By Tasks Organize By Data Flow

Pipeline

Event-Based
Coordination

Algorithm Structure

© Copyright Ian D. Romanick 2008

6-August-2008

Task Parallelism

⇨ Three primary elements:
 Tasks
 Dependencies between tasks
 Scheduling of tasks

© Copyright Ian D. Romanick 2008

6-August-2008

Task Parallelism

⇨ Tasks
 At least as many tasks as UEs...preferably many

more
 Computation of each task should outweigh the over-

head of managing the task and dependencies

© Copyright Ian D. Romanick 2008

6-August-2008

Task Parallelism

⇨ Dependencies
 Ordering constraints – handled by forcing tasks to

execute in a particular order
 Shared data dependencies – more complex

 In some cases there are none
 Removable dependencies can be removed by reworking the

code (next slide)
 Separable dependencies involve accumulations of partial re-

sults into a larger data structure
 Each UE works in a local, temporary copy and the subresults are

accumulated at the end

 If the partial results are combined to a single element, it is called a re-
duction

© Copyright Ian D. Romanick 2008

6-August-2008

Task Parallelism

int ii = 0;
int jj = 0;

for (int i = 0; i < N; i++) {
 /* Loopcarried dependencies: the value in
 * iteration X+1 requires knowledge of the
 * value at iteration X.
 */
 ii = ii + 1;
 jj = jj + i;
 d[ii] = first_big_calculation(ii);
 a[jj] = second_big_calculation(jj);
}

© Copyright Ian D. Romanick 2008

6-August-2008

Task Parallelism

for (int i = 0; i < N; i++) {
 /* The values of ii and jj depend only on the
 * loop iteration count...no dependency!
 */

 const int ii = i;
 const int jj = (i * i + i) / 2;
 d[ii] = first_big_calculation(ii);
 a[jj] = second_big_calculation(jj);
}

© Copyright Ian D. Romanick 2008

6-August-2008

Task Parallelism

⇨ Dependencies
 “Other” dependencies have to be managed by hand

using synchronization primitives
 We'll talk more about doing this in a sensible way later

© Copyright Ian D. Romanick 2008

6-August-2008

Task Parallelism

⇨ Scheduling, especially in task-parallel programs,
can make or break performance

Task 2
Task 3Task 1 Task 6

Task 5
Task 4

© Copyright Ian D. Romanick 2008

6-August-2008

Task Parallelism

⇨ Scheduling, especially in task-parallel programs,
can make or break performance

Task 2
Task 3Task 1

Task 4
Task 6

Task 5

© Copyright Ian D. Romanick 2008

6-August-2008

Task Parallelism

⇨ Scheduling, especially in task-parallel programs,
can make or break performance

Task 2

Task 3

Task 1

Task 4

Task 6

Task 5

© Copyright Ian D. Romanick 2008

6-August-2008

Task Parallelism

⇨ Two general scheduling techniques
 Static – Tasks are partitioned in the relatively equal

sized chunks and statically assigned to UEs
 Dynamic – Used when either the size of each chunk

varies a lot or when the performances of the PEs
differ

 The most common technique is to use a single task queue
where tasks are added and removed by UEs

 Work stealing enhances this technique

© Copyright Ian D. Romanick 2008

6-August-2008

Task Parallelism

⇨ Work stealing attempts to solve two problems
with the single task queue

 Contention on the task queue mutex
 Poor cache performance

© Copyright Ian D. Romanick 2008

6-August-2008

Task Parallelism

⇨ Work stealing attempts to solve two problems
with the single task queue

 Contention on the task queue mutex
 Poor cache performance

⇨ Each UE has its own task queue
 UE adds tasks to the head of its TQ

 Smaller tasks typically end up at the head of the TQ

 UE removes tasks from the head of its TQ
 Improves cache performance

 If a UEs TQ is empty, it steals work from the tail of
another UE's TQ

© Copyright Ian D. Romanick 2008

6-August-2008

Task Parallelism

⇨ Many task-parallel programs are loop-based
 The primary tasks are individual iterations of a loop
 Many parallel programming environments have

special constructs for this form
 Known as the loop parallelism pattern

⇨ Some jobs don't fit the loop parallelism model
 Particularly if all tasks are not known in advance
 Either master / worker or SPMD is usually a better fit

© Copyright Ian D. Romanick 2008

6-August-2008

Divide and Conquer

⇨ Divide and conquer recursively subdivides
problem space in to multiple subproblems.
Subproblems are, eventually, solved, and the
results combined

 Very common design method in sequential algorithms
 Can anyone think of any?

 Merge sort, QuickSort, Mandelbrot generators

 Divide and conquer algorithms dynamically generate
tasks

 This necessitates dynamic scheduling

© Copyright Ian D. Romanick 2008

6-August-2008

Divide and Conquer
Problem

© Copyright Ian D. Romanick 2008

6-August-2008

Divide and Conquer
Problem

Subproblem Subproblem

© Copyright Ian D. Romanick 2008

6-August-2008

Divide and Conquer
Problem

Subproblem

Subproblem

Subproblem

Subproblem Subproblem Subproblem

© Copyright Ian D. Romanick 2008

6-August-2008

Divide and Conquer
Problem

Subproblem

Subproblem

Subproblem

Subproblem Subproblem Subproblem

Solution Solution Solution Solution

© Copyright Ian D. Romanick 2008

6-August-2008

Divide and Conquer
Problem

Subproblem

Subproblem

Subproblem

Subproblem Subproblem Subproblem

Solution Solution Solution Solution

Solution Solution

© Copyright Ian D. Romanick 2008

6-August-2008

Divide and Conquer
Problem

Subproblem

Subproblem

Subproblem

Subproblem Subproblem Subproblem

Solution Solution Solution Solution

Solution Solution

Solution

© Copyright Ian D. Romanick 2008

6-August-2008

Divide and Conquer

⇨ Concurrency is possible when subproblems can
be solved independently

 As we have found, a sequential D&C algorithm be-
comes parallel by defining a task for each call to the
primary “solve” function

 At some point the subproblems are small enough that
just solving them is faster than creating new tasks

 May happen before it is beneficial to stop subdividing
 This threshold, or granularity knob, should be tunable at run-

time

© Copyright Ian D. Romanick 2008

6-August-2008

Divide and Conquer

⇨ Can be implemented using the Fork / Join
pattern

 Subproblems at each split are roughly the same size
 Assign each task to a UE
 Stop splitting when the number of tasks matches the

number of PEs

⇨ Can also be implemented using the Master /
Worker pattern

 One (or slightly more) UE per PE
 Queue of tasks

© Copyright Ian D. Romanick 2008

6-August-2008

Geometric Decomposition

⇨ Many problems are decomposed by subdividing
a large data structure into chunks

 Arrays and array-like structures can be divided
“geometrically” into regions

 If all subregions are independent, task parallelism can
be used

 Many computations require access to data in
neighboring regions

 Computed data must be shared between regions for the
tasks to complete

 This is where geometric decomposition comes into play

© Copyright Ian D. Romanick 2008

6-August-2008

Geometric Decomposition

⇨ Data decomposition granularity is important to
overall efficiency

 Larger chunks results in fewer, larger messages
between tasks

 Reduces messaging overhead

 Smaller chunks results in more, smaller messages
between tasks

 Increases messaging overhead
 Simplifies scheduling...especially if there are many more

chunks than PEs

 Experimentation is usually required to find a balanced
chunk size

© Copyright Ian D. Romanick 2008

6-August-2008

Geometric Decomposition

⇨ Chunk “shape” is also important
 Data is usually only shared along common boundaries

between chunks
 A 2D array divided in long, thin rectangles will have

more boundary regions than one divided into squares
 The so-called surface-to-volume effect

⇨ Chunk shape may be determined by other
factors

 Reuse of sequential code
 Other portions of the parallel program
 etc.

© Copyright Ian D. Romanick 2008

6-August-2008

Geometric Decomposition

⇨ Data duplication can improve communication
performance

 Extra copies of boundary data can be kept for
neighbor tasks to read

 May be called ghost boundaries or shadow copies

 Double buffer can also be used

© Copyright Ian D. Romanick 2008

6-August-2008

Geometric Decomposition

⇨ Non-local data required for a computation must
be available before that computation can begin

 If all shared data is ready at the beginning of a
computation “phase,” it can be exchanged all at once,
up front

 Data exchange and computation can also proceed
concurrently

 Updating the “interior” data that does not rely on the neigh-
bor's boundary data

 In cases where some data is not yet available at the start of
the computation phase

© Copyright Ian D. Romanick 2008

6-August-2008

Geometric Decomposition

⇨ Partition data into chunks, distribute chunks to
UEs

 Simple
 Can lead to poor performance if per-chunk work is

unbalanced or becomes unbalanced as computation
progresses

 Generating many more chunks that UEs and assign-
ing multiple “random” chunks to a single UE can help

⇨ Can dynamically redistribute chunks among UEs
 Can cause a lot of overhead
 Can increase cache-miss rate

© Copyright Ian D. Romanick 2008

6-August-2008

Recursive Data

⇨ Recursive data structures are often difficult to
operate on concurrently

 Serial traversal of the structure must be converted to
one that allows concurrent operation

 Usually increases the total amount of work

 Problem conversion may be difficult in the first place
 Requires looking at well-known problems is odd ways
 May result in a really complex algorithm

 May be difficult to exploit the exposed concurrency
 Communication overhead may be difficult to overcome

© Copyright Ian D. Romanick 2008

6-August-2008

Recursive Data

⇨ The data structure is decomposed into one
element per task

 Simplest method is to assign one task per UE
 If there are too many UEs per PE, the performance

will be poor

⇨ Result usually looks like a loop that operates on
every element of the structure simultaneously

 Good fit for classic vector computers!
 Can cause synchronization headaches

 “Double buffering” pointers (i.e., next pointer in a linked list)
is often helpful

© Copyright Ian D. Romanick 2008

6-August-2008

Recursive Data

⇨ Example

© Copyright Ian D. Romanick 2008

6-August-2008

Pipeline

⇨ The classic “assembly line”
 Improves throughput not latency
 Requires many more work items than pipeline stages

to be efficient

© Copyright Ian D. Romanick 2008

6-August-2008

Pipeline

⇨ One pipeline stage per task
 Concurrency is limited by the number of stages
 Task size should be relatively equivalent

 Otherwise some stages will finish and sit idle
 More time consuming stages can also be parallelized

 Fill time and drain time should be relatively small
compared to total running time

⇨ Program structure is important
 SPMD (next week) with a switch statement
 OOP where each stage is a subclass with a do_work

method

© Copyright Ian D. Romanick 2008

6-August-2008

Pipeline

⇨ The pipeline is all about data flow
 How data flows from one stage to the next will

dominate the program design
 Several common techniques:

 Buffered, ordered message passing
 Shared queue

⇨ Flow is more complex if stages are also parallel
 Consider a stage with 4 parallel units sending data to

a stage with 5 parallel unit
 Usually have an aggregation / disaggregation stage in

between
 May be necessary to ensure data flows in the correct order

© Copyright Ian D. Romanick 2008

6-August-2008

Pipeline

⇨ Typically assign one stage per PE
 Some stages can also operate on special purpose

hardware
 Encryption accelerators, graphics accelerators, etc.

 If there are fewer PEs than stages, assign stages with
different resource uses to the same PE

 Assign compute intensive stage and an I/O intensive stage to
the same PE

 Otherwise assign adjacent stages to the same PE
 More cache friendly

© Copyright Ian D. Romanick 2008

6-August-2008

Event-Based Coordination

⇨ Collection of semi-independent tasks that
operate in a non-linear order

 Think of the pipeline as a directed graph without loops
 Event-based coordination is a directed graph with

loops

⇨ Each task receives an event, processes it, and
possibly sends out other events

 Asynchronous communication is required
 Shared queue is your friend

© Copyright Ian D. Romanick 2008

6-August-2008

Event-Based Coordination

⇨ Events must be processed in the proper order
 Tasks may not be able to process events in the order

received
 The oldest event in the system may need to be processed

first
 Tasks may have to wait to process one event until after

receiving a different event

© Copyright Ian D. Romanick 2008

6-August-2008

Event-Based Coordination

⇨ Out-of-order events can be handled either opti-
mistically or pessimistically

 Optimistic assumes it's okay to process events in the
order received

 May need a way to “back out” events processed out of order

 Pessimistic ensures that events are only processed in
order

 Can add extra latency waiting for missing events
 Can add extra communication to be sure that no events are

on the way

© Copyright Ian D. Romanick 2008

6-August-2008

Next week...

⇨ NO CLASS NEXT WEEK!
 Meet again on 8/20

⇨ Quiz #2
⇨ Assignment #2 due
⇨ Supporting Structures

 SPMD
 Master / worker
 Loop parallelism
 Shared Queue
 etc.

© Copyright Ian D. Romanick 2008

6-August-2008

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

